

STD5N52U STF5N52U

N-channel 525 V, 1.28 Ω, 4.4 A, DPAK, TO-220FP UltraFASTmesh™ Power MOSFET

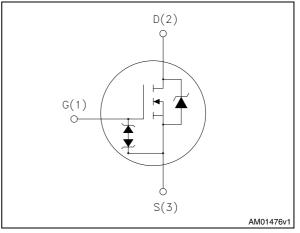
Features

Туре	V _{DSS}	R _{DS(on)} max	ID	Pw
STD5N52U	525 V	< 1.5 Ω	4.4 A	70 W
STF5N52U	525 V	< 1.5 Ω	4.4 A	25 W

- 100% avalanche tested
- Outstanding dv/dt capability
- Gate charge minimized
- Very low intrinsic capacitances
- Very low R_{DS(on)}
- Extremely low t_{rr}

Application

- Switching applications
 - High voltage inverters specific fo LCD TV
 - Lighting full bridge topology
 - Motor control


Description

The UltraFASTmesh[™] series associates all advantages of reduced on-resistance, Zener gate protection and very high dv/dt capability with an extremely enhanced fast body-drain recovery diode.

Table 1.	Device	summary
	Device	Summary

	e e
DPAK	123 TO-220FP

Figure 1. Internal schematic diagram

Order code	Marking	Package	Packaging
STD5N52U	5N52U	DPAK	Tape and reel
STF5N52U	5N52U	TO-220FP	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	9
4	Package mechanical data 1	0
5	Packaging mechanical data 1	13
6	Revision history1	14

1 Electrical ratings

Symbol	Parameter	Value		— Unit
Symbol	Farameter	TO-220FP	DPAK	0111
V _{GS}	Gate- source voltage	± 30		V
I _D	Drain current (continuous) at $T_C = 25 \text{ °C}$	4.4	4	А
I _D	Drain current (continuous) at $T_C = 100 \ ^{\circ}C$	2.8	3	А
I _{DM} ⁽¹⁾	Drain current (pulsed)	17.	.6	Α
P _{TOT}	Total dissipation at $T_{C} = 25 \text{ °C}$	25 70		W
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_J max)	4.4		А
E _{AS}	Single pulse avalanche energy (starting $T_J = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	170		mJ
dv/dt ⁽²⁾	Peak diode recovery voltage slope	20		V/ns
V _{ESD(G-S)}	G-S ESD (HBM C=100 pF; R=1.5 kΩ)	2800		V
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink $(t=1 s;T_C=25 °C)$	2500		V
T _J T _{stg}	Operating junction temperature Storage temperature	-55 to 150		°C

1. Pulse width limited by safe operating area

2. I_{SD} \leq 4.4 A, di/dt \leq 400 A/µs, peak V_{DS} \leq V_{(BR)DSS}

Symbol	Parameter	Valu	Unit		
Symbol	Falanciel	TO-220FP	DPAK	Unit	
R _{thj-case}	Thermal resistance junction-case max	5	1.78	°C/W	
R _{thj-amb}	Thermal resistance junction-ambient max	62.5 100		°C/W	
Τ _J	Maximum lead temperature for soldering purpose	300		°C/W	

2 Electrical characteristics

(Tcase =25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0$	525			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	$V_{DS} =$ Max rating $V_{DS} =$ Max rating, T _C =125 °C			10 500	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 50 \ \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static drain-source on resistance	V_{GS} = 10 V, I _D = 2.2 A		1.28	1.5	Ω

Table 4. On /off states

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25 V, f = 1 MHz, V _{GS} = 0	-	529 71 13.4	-	pF pF pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	$V_{DS} = 0$ to 420 V, $V_{GS} = 0$	-	11	-	pF
Rg	Gate input resistance	f=1 MHz open drain	-	6	-	Ω
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 416 \text{ V}, I_D = 4.4 \text{ A},$ $V_{GS} = 10 \text{ V}$ (see Figure 17)	-	16.9 4.2 8.4	-	nC nC nC

1. $C_{oss eq}$ time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off-delay time Fall time	$V_{DD} = 260 \text{ V}, \text{ I}_{D} = 2.2 \text{ A}, \\ \text{R}_{\text{G}} = 4.7 \Omega, \text{ V}_{\text{GS}} = 10 \text{ V} \\ (see \ Figure \ 16)$	-	11.4 13.6 23.1 15	-	ns ns ns ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)		-		4.4 17.6	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 4.4 A, V _{GS} = 0	-		1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 4.4 A, di/dt = 100 A/μs V _{DD} = 60 V <i>(see Figure 18)</i>	-	55 95 3.5		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 4.4 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 60 \text{ V } \text{T}_{\text{J}} = 150 ^{\circ}\text{C}$ (see Figure 18)	-	120 266 4.5		ns μC Α

Table 7.Source drain diode

1. Pulse width limited by safe operating area

2. Pulsed: pulse duration = $300 \ \mu$ s, duty cycle 1.5%

Table 8. Gate	-source Zener diode
---------------	---------------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate-source breakdown voltage	lgs=± 1 mA (open drain)	30	-	-	V

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220FP Figure 3. Thermal impedance for TO-220FP

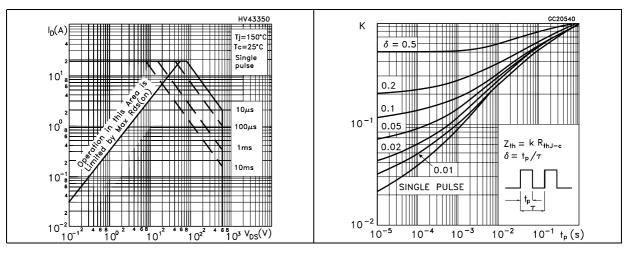


Figure 4. Safe operating area for DPAK

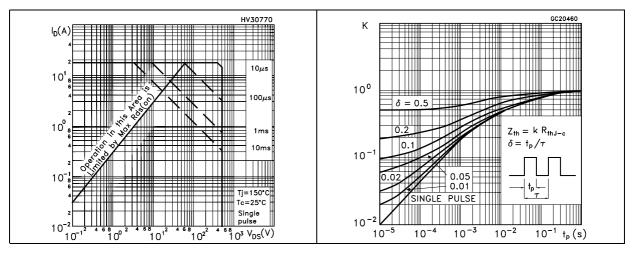
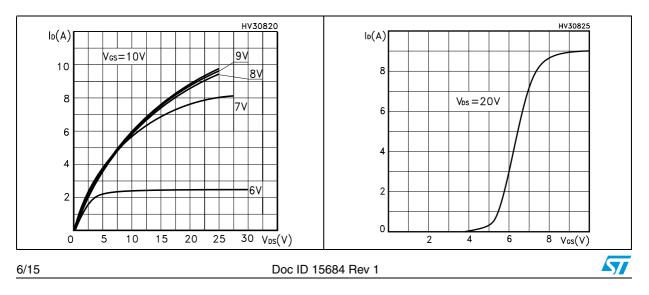
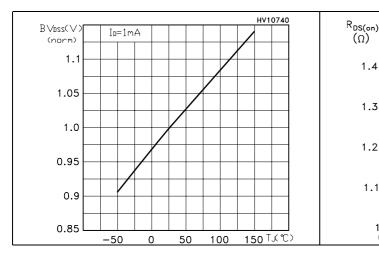



Figure 5.



Thermal impedance for DPAK

HV10980

Figure 8. Normalized BV_{DSS} vs temperature Figure 9. Static drain-source on resistance

1.4

1.3

1.2

1.1

1

0

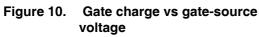
1

Figure 11. Capacitance variations

2

3

4


 $I_D(A)$

HV30800

Ciss

Coss

Crss

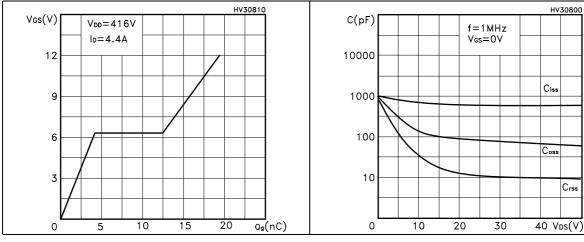
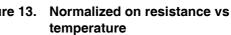
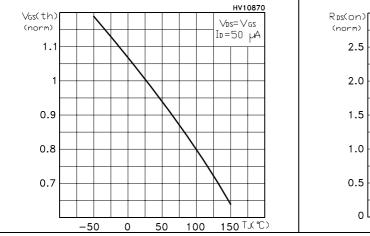





Figure 12. Normalized gate threshold voltage Figure 13. vs temperature

 $V_{GS} = 10V$

Vsd(V)

1

0.8

0.6

0.4

0.2

0

1

2

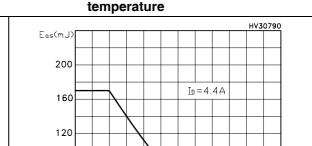
3

4

5

Isd(A)

125 TJ(°C)


Figure 14. Source-drain diode forward characteristics

HV11020

25℃

150 °C

T_=-50 ℃

80

40

0

25

50

75

100

Figure 15. Maximum avalanche energy vs temperature

3 Test circuits

Figure 16. Switching times test circuit for resistive load

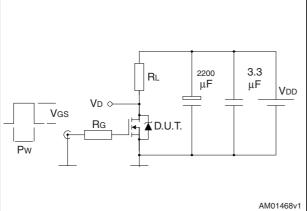
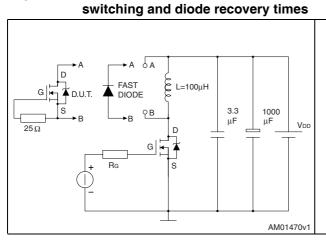
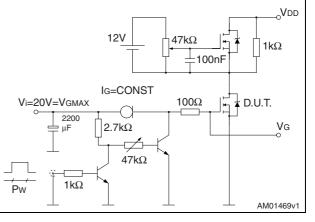




Figure 18. Test circuit for inductive load Figure 19. Uncl



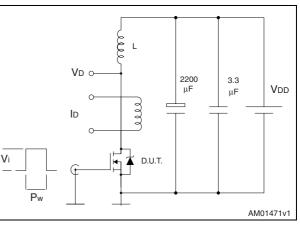
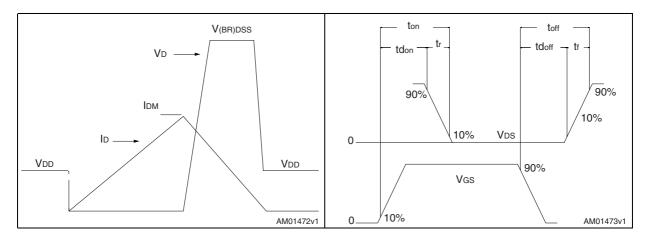
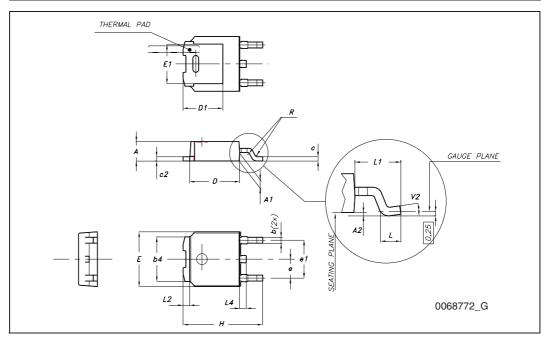
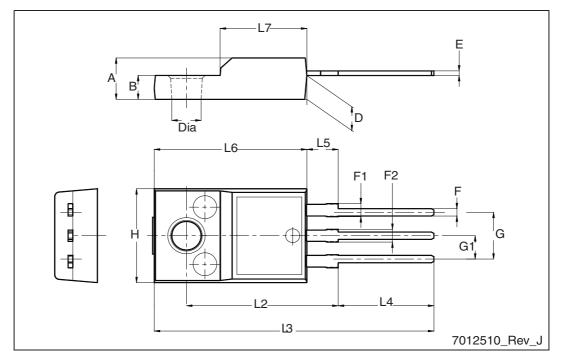



Figure 17. Gate charge test circuit


Doc ID 15684 Rev 1

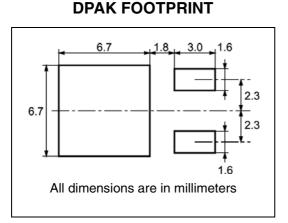
4 Package mechanical data

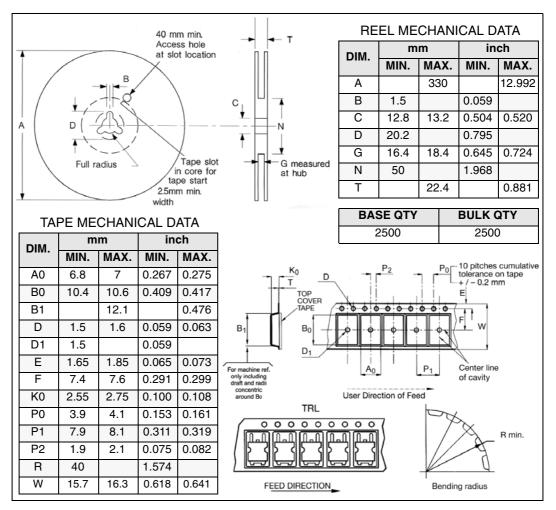
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.


	TO-252 (DPAK) mechanical data			
DIM.		mm.		
Diwi.	min.	typ	max.	
A	2.20		2.40	
A1	0.90		1.10	
A2	0.03		0.23	
b	0.64		0.90	
b4	5.20		5.40	
С	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
D1		5.10		
E	6.40		6.60	
E1		4.70		
е		2.28		
e1	4.40		4.60	
Н	9.35		10.10	
L	1			
L1		2.80		
L2		0.80		
L4	0.60		1	
R		0.20		
V2	0 °		8 °	

Package mechanical data

Dim.	mm		
	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.5
G	4.95		5.2
G1	2.4		2.7
н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2




Doc ID 15684 Rev 1

5 Packaging mechanical data

TAPE AND REEL SHIPMENT

6 Revision history

Table 9.Document revision history

Date	Revision	Changes
06-May-2009	1	First release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 15684 Rev 1