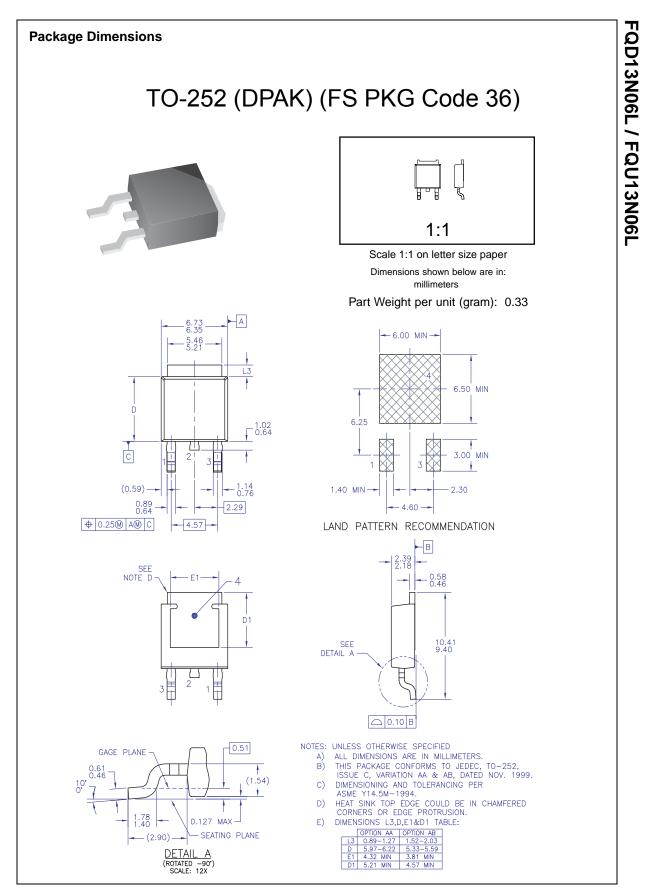
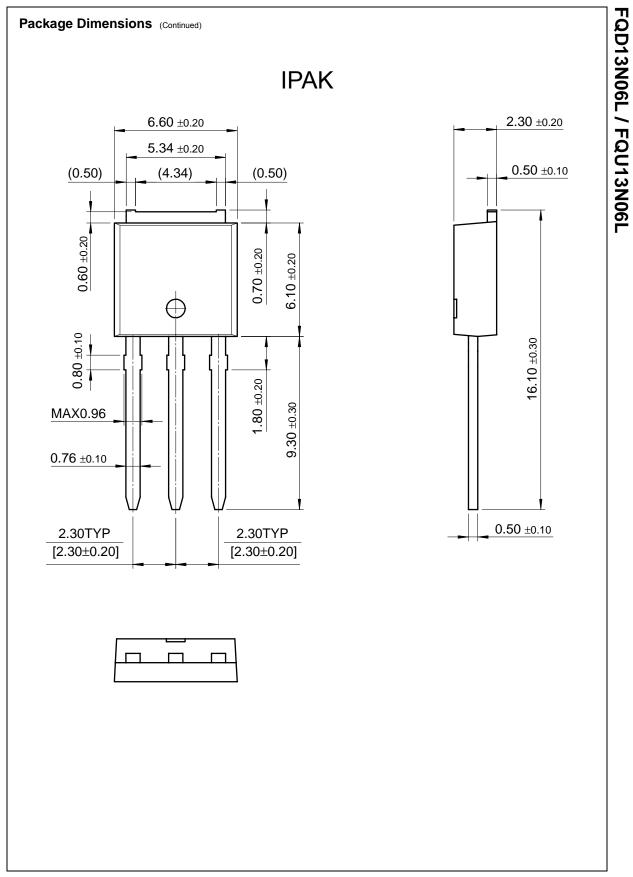

Symbol	Parameter	Тур	Max	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		4.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient *		50	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		110	°C/W


eristics -Source Breakdown Voltage kdown Voltage Temperature ficient Gate Voltage Drain Current -Body Leakage Current, Forward -Body Leakage Current, Reverse eristics Threshold Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 250 \mu\text{A}$ $I_{D} = 250 \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 48 \text{V}, T_{C} = 150^{\circ}\text{C}$ $V_{GS} = 20 \text{V}, V_{DS} = 0 \text{V}$ $V_{GS} = -20 \text{V}, V_{DS} = 0 \text{V}$	60 	 0.05 	 1 10	V V/°C μA
-Source Breakdown Voltage kdown Voltage Temperature ficient Gate Voltage Drain Current -Body Leakage Current, Forward -Body Leakage Current, Reverse	$I_{D} = 250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 60 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = 48 \ \text{V}, \ T_{C} = 150^{\circ}\text{C}$ $V_{GS} = 20 \ \text{V}, \ V_{DS} = 0 \ \text{V}$		0.05 	 1	V/°C
kdown Voltage Temperature ficient Gate Voltage Drain Current -Body Leakage Current, Forward -Body Leakage Current, Reverse	$I_{D} = 250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 60 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = 48 \ \text{V}, \ T_{C} = 150^{\circ}\text{C}$ $V_{GS} = 20 \ \text{V}, \ V_{DS} = 0 \ \text{V}$		0.05 	 1	V/°C
Gate Voltage Drain Current -Body Leakage Current, Forward -Body Leakage Current, Reverse Pristics	$V_{DS} = 48 V, T_C = 150^{\circ}C$ $V_{GS} = 20 V, V_{DS} = 0 V$				
-Body Leakage Current, Forward -Body Leakage Current, Reverse	$V_{DS} = 48 V, T_C = 150^{\circ}C$ $V_{GS} = 20 V, V_{DS} = 0 V$				
-Body Leakage Current, Reverse	V _{GS} = 20 V, V _{DS} = 0 V				μA
-Body Leakage Current, Reverse				100	nA
				-100	nA
			1	1 1	
Theshold voltage	V _{DS} = V _{GS} , I _D = 250 μA	1.0		2.5	V
-	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 230 \mu \text{A}$ $V_{\rm GS} = 10 \text{V}, I_{\rm D} = 5.5 \text{A}$				v
c Drain-Source Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$ $V_{GS} = 5 \text{ V}, \text{ I}_{D} = 5.5 \text{ A}$		0.092 0.115	0.115 0.145	Ω
	00 5				S
			Ū		0
aracteristics		1	I		
Capacitance	V _{DS} = 25 V, V _{GS} = 0 V,		270	350	pF
ut Capacitance	f = 1.0 MHz		95	125	pF
rse Transfer Capacitance			17	23	pF
haractoristics					
			8	25	ns
On Rise Time			90	190	ns
Off Delay Time	$- R_{G} = 25 \Omega$		20	50	ns
Off Fall Time	(Note 4, 5)		40	90	ns
Gate Charge	$V_{p,q} = 48 V_{p,q} = 13.6 A_{p,q}$		4.8	6.4	nC
•	$V_{GS} = 5 V$				
			1.6		nC
-Drain Charge	(Note 4, 5)		1.6 2.7		nC nC
	(Note 4, 5)				
-Drain Charge e Diode Characteristics a mum Continuous Drain-Source D	(Note 4, 5)				
e Diode Characteristics a	(Note 4, 5) and Maximum Ratings iode Forward Current		2.7		nC
e Diode Characteristics a mum Continuous Drain-Source D mum Pulsed Drain-Source Diode	(Note 4, 5) and Maximum Ratings iode Forward Current Forward Current		2.7	 11	nC A
e Diode Characteristics a mum Continuous Drain-Source D	(Note 4, 5) and Maximum Ratings iode Forward Current Forward Current		2.7	 11 44	nC A A
	ard Transconductance aracteristics Capacitance ut Capacitance rse Transfer Capacitance haracteristics On Delay Time On Rise Time Off Delay Time	ard Transconductance $V_{DS} = 25 \text{ V}, \text{ I}_D = 5.5 \text{ A}$ (Note 4)aracteristicsCapacitance $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ ut Capacitance $f = 1.0 \text{ MHz}$ rse Transfer Capacitance $f = 1.0 \text{ MHz}$ haracteristicsOn Delay Time $V_{DD} = 30 \text{ V}, \text{ I}_D = 6.8 \text{ A},$ Off Delay Time $V_{DS} = 25 \Omega$ Off Fall Time(Note 4, 5)Gate Charge $V_{DS} = 48 \text{ V}, \text{ I}_D = 13.6 \text{ A},$	ard Transconductance $V_{DS} = 25 \text{ V}, \text{ I}_D = 5.5 \text{ A}$ (Note 4)aracteristics $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1.0 MHzCapacitance $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1.0 MHzint Capacitance $f = 1.0 \text{ MHz}$ int Capacitance $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1.0 MHzint Capacitance $V_{DS} = 25 \text{ V}, \text{ V}_{DD} = 6.8 \text{ A},$ $R_G = 25 \Omega$ On Rise Time $V_{DD} = 30 \text{ V}, \text{ I}_D = 6.8 \text{ A},$ $R_G = 25 \Omega$ Off Delay Time $V_{DS} = 48 \text{ V}, \text{ I}_D = 13.6 \text{ A},$	ard Transconductance $V_{DS} = 25 \text{ V}, I_D = 5.5 \text{ A}$ (Note 4)6aracteristicsCapacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz270 ut Capacitancef = 1.0 MHz95 rse Transfer Capacitancef = 1.0 MHz17haracteristicsOn Delay Time $V_{DD} = 30 \text{ V}, I_D = 6.8 \text{ A},$ $R_G = 25 \Omega$ 8 Off Delay Time(Note 4, 5)20 Off Fall Time(Note 4, 5)40	ard Transconductance $V_{DS} = 25 \text{ V}, I_D = 5.5 \text{ A}$ (Note 4) 6 aracteristics Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ 270 350 Capacitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ 95 125 ut Capacitance $f = 1.0 \text{ MHz}$ 17 23 haracteristics On Delay Time $V_{DD} = 30 \text{ V}, I_D = 6.8 \text{ A},$ 8 25 On Rise Time $V_{DD} = 30 \text{ V}, I_D = 6.8 \text{ A},$ 8 25 90 190 Off Delay Time $V_{CD} = 25 \Omega$ (Note 4, 5) 40 90



SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now ™ CorePOWER™ CACSSVOLT™ CTL™ CUrrent Transfer Logic ™ EcoSPARK® EfficentMax™ EZSWITCH™ * Fairchilds Fairchilds Fairchilds Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastVCore™ FlashWriter® * FPS™ F-PFS™	FRFET [®] Global Power Resource SM Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MiCrOCOUPLER™ MiCrOFET™ MicroFat™ MicroFat™ MitonMax™ MotionSPM™ OPTOLOGIC® OPTOPLANAR® ® DP SPM™ Power-SPM™ PowerTrench® PowerXS™	Programmable Active Droop TM QFET [®] QS TM Quiet Series TM RapidConfigure TM \widetilde{P}_{T} Saving our world, 1mW /W /kW at a time TM SmartMax TM SMART START TM SMART START TM SMP [®] STEALTH TM SuperSOT TM -3 SuperSOT TM -6 SuperSOT TM -6 SuperSOT TM -8 SuperSOT TM -8 S	The the transformer of transformer of transformer of the transformer of
* EZSWITCH™ and FlashWriter [®] are t			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

EARCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev